Масс-спектрометрическое детектирование токсичных веществ в практике ветеринарных лабораторий

Определение содержания гормонов в пищевых продуктах

Гормоны – потенциальная опасность

- Гормоны это вещества продуцируемые железами и органами живого организма. Они переносятся различными путями по организму и способствуют более эффективному функционированию этого организма
- Анаболические стероиды могут быть полезны, однако врачи назначают их прием в исключительных случаях. Они могут с одной стороны помочь восстановить поврежденные ткани, а с другой – нанести серьезный вред здоровью и даже привести к серьезным заболеваниям.
- Применение анаболических стероидов серьезная проблема для общества, так как молодые люди принимают их в больших количествах для совершенствования формы тела. При этом они не отдают себе отчета в потенциальной опасности этих соединений.

Гормоны в производстве продуктов питания

- В молочной промышленности гормоны используются для повышения надоев. Тем самым гормоны увеличивают рентабельность мясомолочного производства
- Некоторые гормоны используются фермерами для ускорения роста скота
- Даже небольшое количество гормонов в пище способствует более раннему половому созреванию

Гормоны и общество

 История анаболических стероидов как запрещенных препаратов началась во время Олимпийских игр в 1954 году

 Употребление пищевых продуктов, содержащих запрещенные стероиды может привести к положительным результатам при допинг-тестированиии, что может привести к дисквалификации спортсмена на соревнованиях.

 Один из последних случаев – 336 человек в Шанхае были уличены в применении допинга после употребления в пищу свинины, загрязненной анаболическими стероидами.

Контроль за применением стероидов

- В 1981 (Директива 81/602/ЕЕС), ЕС запретило применение веществ, оказывающих гормональное действие как ускорители роста в животноводстве.
- Этот запрет применяется к членам
 Сообщества и продуктом, импортируемым из третьих стран.
- Запрещенные вещества перечислены в приложении 1 директивы 96/23/ЕС: (А3 стероиды, А5 бета-агонисты)

Определение содержания <u>β2-агонистов</u>

β_2 -агонисты

- β₂-агонисты действуют как стимуляторы роста и участвуют в липолизе, обеспечивая транспорт жиров в мышцах.
- В качестве объектов исследования были выбраны печень и моча. Agilent 6410 QQQ использовался для количественного анализа и качественного подтверждения.
- Целью настоящего исследования была разработка метода пригодного как для скрининга, так и для подтверждения четырех β₂-агонистов (Clenbuterol, Salbutamol, Mabuterol, Brombuterol) на минимально рекомендованном концентрационном уровне 0,5 мкг/кг или ниже.

Параметры хроматографического

разделения

♦ ВЭЖХ система : Agilent 1200 RRLC series

♦ Колонка : Agilent SB-C18, 2.1×100, 1.8 µm

◆ Объем пробы : 5.0 µL

◆ Скорость потока : 0.3 mL/min

Температура колонки: 40°

🔷 Подвижная фаза : A-10mM Ammonium Formate

+0.1% Formic Acid;

B-100% ACN

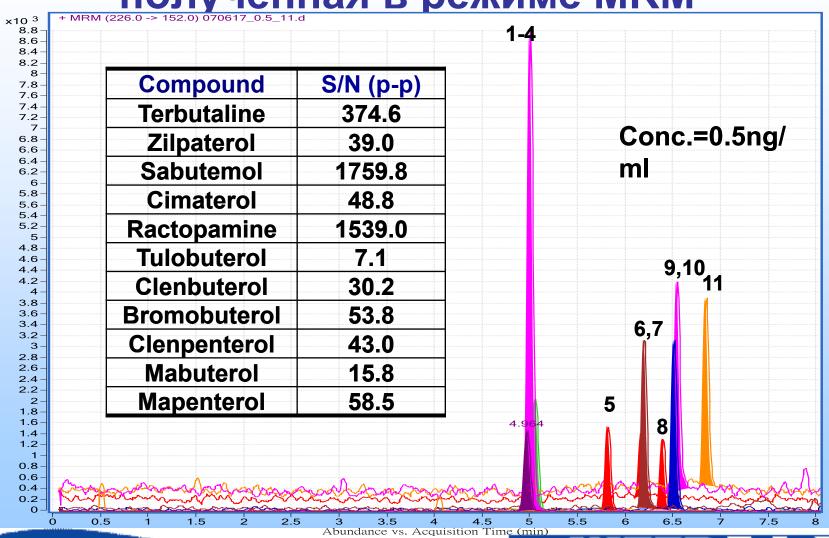
Традиент

Время	Α	В	Flow-Rate
			(ml/min)
0	99	1	0.3
5	10	90	0.3
8	10	90	0.3
8.1	99	1	0.5
14	99	1	0.5
14.1	99	1	0.3

Параметры массспектрометрического детектирования

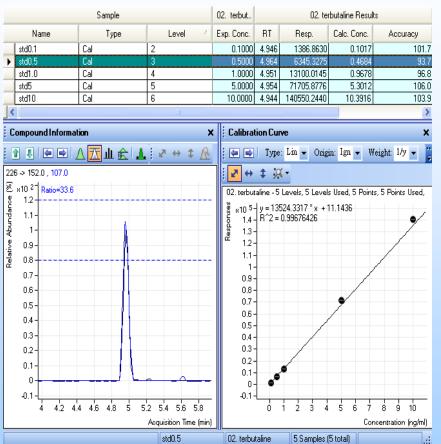
				Dwell	Fragmentor	Collision
Time	Compound	Precursor	Product	(ms)	(V)	Energy
				, ,	,	(V)
4.95	Terbutaline	226	152	10	100	15
			170	10	100	30
4.98	Zilpaterol	262	244	10	100	10
			185	10	100	25
4.98	Salbutemol	240	222	10	100	5
			148	10	100	15
5.04	Cimaterol	220	202	10	80	5
			160	10	80	15
5.80	Ractopamine	302	284	10	100	10
			164	10	100	15

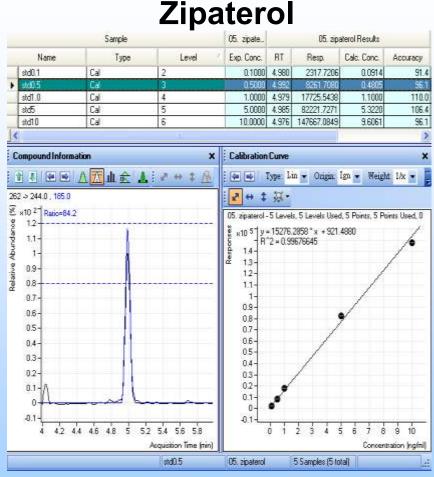
Красным помечены целевые ионы для количественного анализа


Параметры масс-спектрометрического детектирования

Time	Compound	Precursor	Product	Dwell (ms)	Fragmentor (V)	Collision Energy
6.15	Tulobuterol	228	119	10	100	(V) 30
0110	10100000101		172	10	100	10
6.18	Clenbuterol	277	203	10	100	10
			259	10	100	5
6.37	Bromobuterol	367	349	10	100	10
			293	10	100	15
6.49	Clenpenterol	291	203	10	100	15
			273	10	100	5
6.52	Mabuterol	311	237	10	100	15
			293	10	100	10
6.83	Mapenterol	325	237	10	100	15
			217	10	100	25

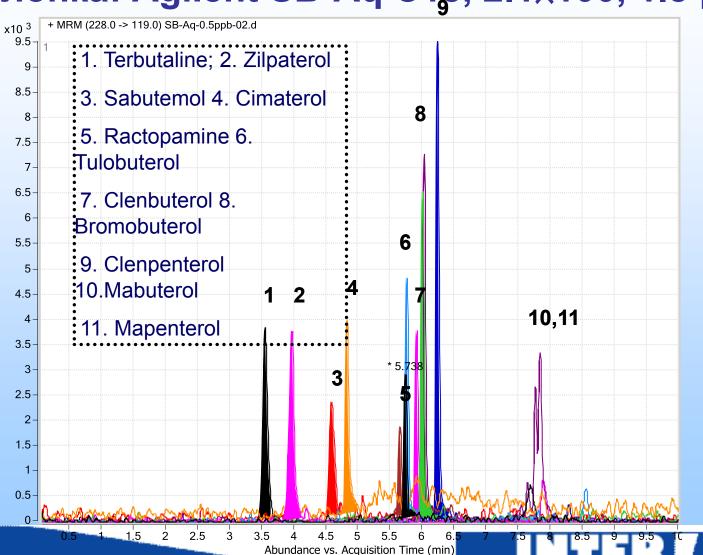
Красным помечены целевые ионы для количественного анализа




Результаты: **Хроматограмма** полученная в режиме **MRM**

Результаты анализа стероидов

Terbutaline



Совпадение подтверждающих ионов Линейность калибровочных кривых

Мин. точка=0.эпул...

NITERLAB

Оптимизация разделения: Колонка: Agilent SB-Aq C18, 2.1×100, 1.8 µm

Анализ β2-агонистов

- Использование колонки Agilent SB-Aq C18, 2.1×100, 1.8 μm позволяет уверенное разделить 11 целевых стероидов с минимальной концентрацией 0.5 нг/мл особенно для первых четырех соединений.
- Предел обнаружения достигнутый на Agilent 6410 QQQ составляет 0.5 мкг/кг, что соответствует требованиям европейских нормативных документов.

Определение содержания стероидов

Параметры хроматографического разделения

♦ ВЭЖХ система : Agilent 1200 RRLC series

♦ Колонка : Agilent Extend-C18, 2.1×100, 1.8 µm

♦ Объем образца : 5.0 µL

◆ Скорость потока : 0.3 mL/min

◆ Температура колонки: 40°С

🔶 Подвижная фаза :А-10mM Ammonium acetate;

B-100% ACN

Традиент : суммарно 15 мин и 5 мин промывка колонки

Time	В	Flow-Rate (ml/min)
0	20	0.3
6	40	
8	90	

Параметры массспектрометрического детектирования

Режим: Ионизация ESI с детектированием положительно

заряженных ионов

Давление в распылителе: 45 psi

Поток осушающего газа: 11L/min

Температура осушающего газа: 320°C

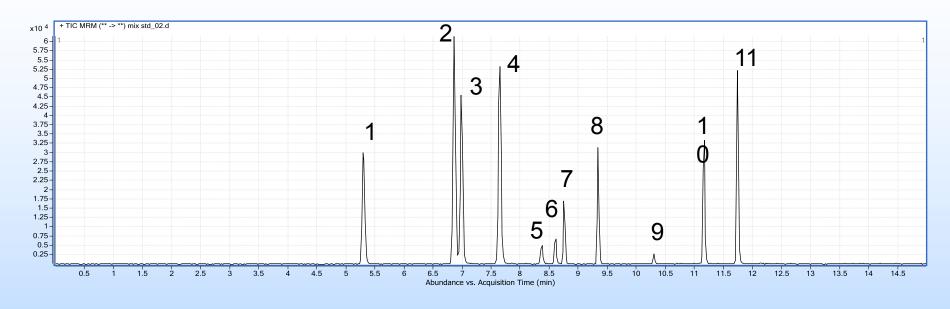
V_{cap} : 4000V

Разрешение Q1: 0.7 amu

Разрешение Q2: 0.7 amu

Оптимальные параметры для анализа стероидов

Time	Compound	Precursor	Product	Dwell (ms)	Fragmentor (V)	Collision Energy (V)
5.1	1-dehydrocortisol	361.1	343.3	10	120	5
			147.3	10	120	30
6.665	Betamethasone	393.3	373.3	10	120	5
			355	10	120	10
6.793	Dexamethasone	393.3	355	10	120	10
			373.3	10	120	5
7.462	Trenbolone	271.2	253.2	10	120	20
			199.2	10	120	25
8.174	Cortisolacetate	405.2	327	10	120	20
			309	10	120	20


Оптимальные параметры для анализа стероидов

Time	Compound	Precursor	Product	Dwell (ms)	Fragmentor (V)	Collision Energy (V)
8.450	Prednisoneacetate	401.1	295.5	10	120	10
			383	10	120	10
8.626	Cortisoneacetate	403.2	163	10	120	30
			343.2	10	120	20
9.275	methyltestosterone	303.1	285.1	10	120	15
			97	10	120	30

Оптимальные параметры для анализа стероидов

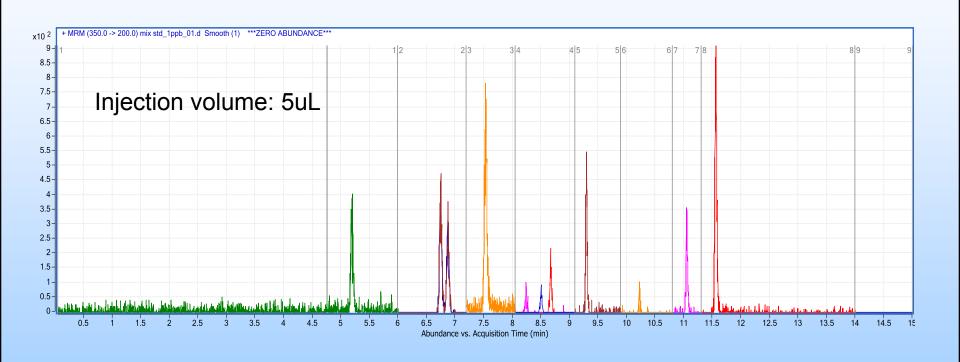
Time	Compound	Precursor	Product	Dwell (ms)	Fragmentor (V)	Collision Energy (V)
10.210	Beclomethasone 17a, 21- pipropionate	522.1	504	10	120	10
			320	10	120	20
11.031	17b-hydroxy-4- androsten-3-one 17 propionate	345.1	97.1	10	120	25
			343.2	10	120	35
11.532	Nanarolonepheylpr opionate	407.2	257.2	10	120	15
			105.1	10	120	30

Анализ стероидов

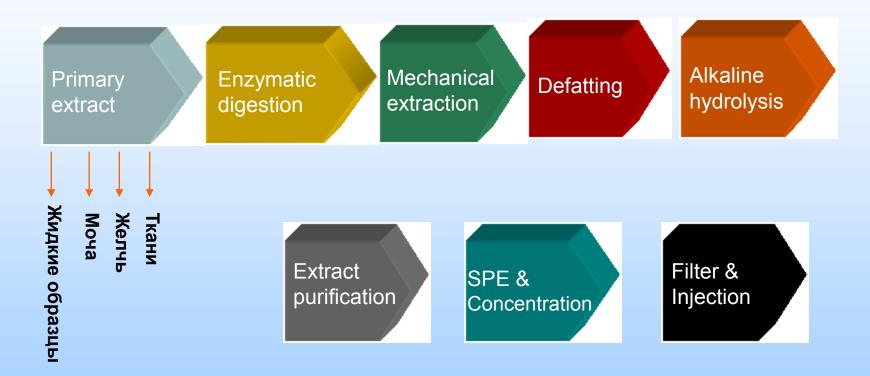
- 1. 1-dehydrocortisol
- 2. betamethasone

3. dexamethasone

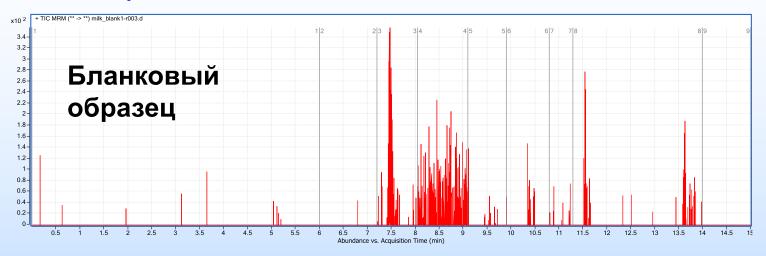
4. Trenbolone

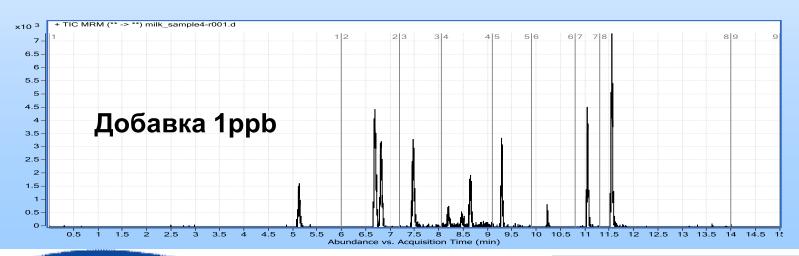

5. cortisolacetate

6. Cortisoneacetate


- 7. prednisoneacetate
- 8. methyltestosterone
- 9. beclomethasone
- 10. 17b-hydroxy-4-androsten-3-one 17-propionate
- 11. nanarolonepheylpropionate

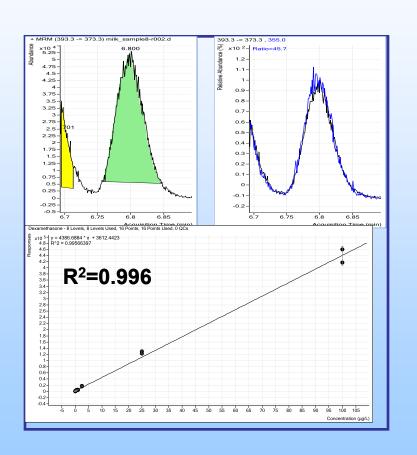
Анализ стероидов: результат введения 0,1 ppb

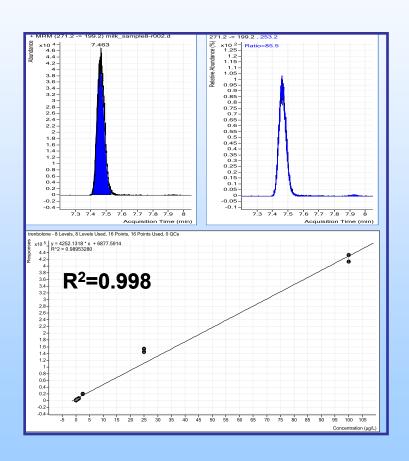



Примерная процедура пробоподготовки образцов на анализ стероидов

Результат анализа молока

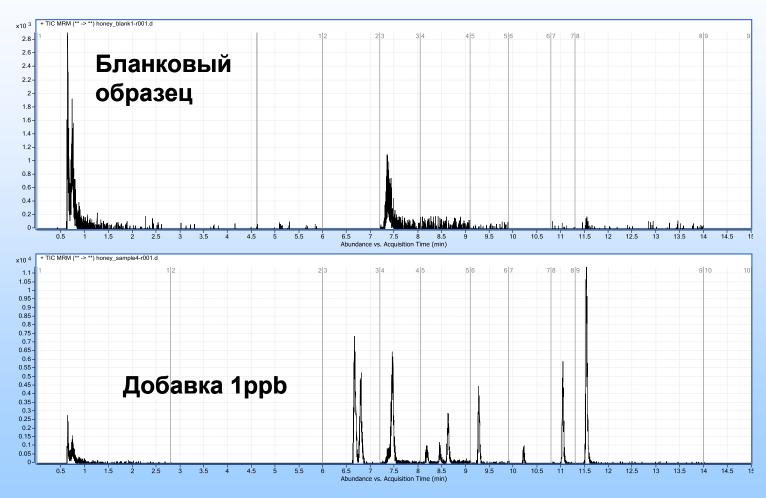
Объем образца: 5uL



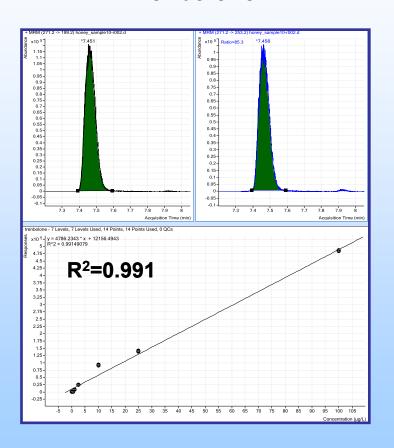


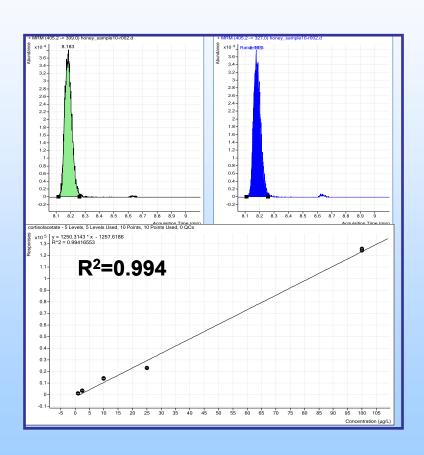
Результат анализа молока

Dexamethasone


Trenbolone

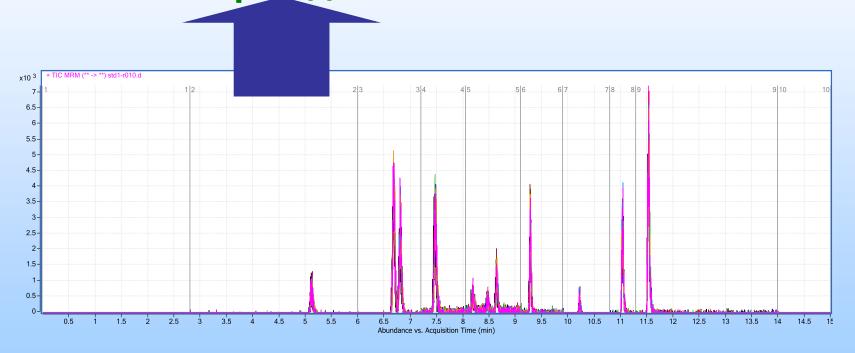
Результат анализа мёда


Объем образца: 5uL



Результат анализа мёда

Trenbolone


Cortisol acetate

Воспроизводимость результатов для раствора стандартов

Введение 1ppb, 10 введений в течение трех дней

Воспроизводимость результатов для раствора стандартов

	Name	RSD _{1ppb (n=10)}	RSD _{10ppb (n=10)}
1	1-dehydrocortisol	2.2	1.4
2	Betamethasone	1.9	1.1
3	Dexamethasone	1.6	1.1
4	Trenbolone	2.1	1.2
5	Cortisol acetate	1.7	0.8
6	Cortisone acetate	1.6	0.7
7	Prednisone acetate	1.4	0.3
8	Methyl testosterone	2.2	1.7
9	Beclomethasone 17a 21-Dipropionate	1.7	1.2
10	17b-hydroxy-4-androster-3-one 17- propionate	1.8	1.1
11	Nanarolonepheylpropionate	2.0	1.2

Воспроизводимость результатов для образцов продуктов питания

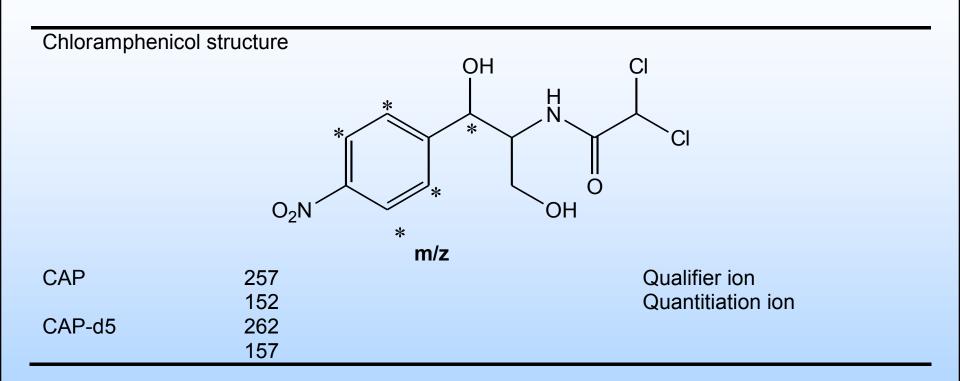
	Name	RSD (молоко)	RSD (Мёд)
1	1-dehydrocortisol	3.2	5.6
2	Betamethasone	2.6	3.6
3	Dexamethasone	3.0	2.8
4	Trenbolone	1.7	1.9
5	Cortisol acetate	1.6	2.1
6	Cortisone acetate	1.1	3.0
7	Prednisone acetate	0.8	0.9
8	Methyl testosterone	0.9	1.1
9	Beclomethasone 17a 21- Dipropionate	1.2	1.4
10	17b-hydroxy-4-androster-3-one 17-propionate	0.3	0.9
11	Nanarolonepheylpropionate	0.3	0.7
		1	4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Анализ стероидов

- Хорошие результаты:
 - ✓ Чувствительность
 - ✓ Воспроизводимость
 - ✓ Линейность
- Соответствует требования нормативных актов EC
- Рекомендовано применение внутреннего стандарта для дальнейшей валидации метода
- Для некоторых соединений, таких как
 Beclomethasone 17a 21-dipropionate и некоторых
 других, может быть рекомендовано
 использование ионизации APCI, дающей лучшие
 результаты

Примеры использования Agilent 6410 QQQ

Определение содержания хлорамфеникола



Определение содержания Хлорамфеникола

- > Хлорамфеникол (Chloramphenicol CAP) антибиотик широкого спектра действия
- САР может быть причиной апластической анемиии
- По данным мировой организации торговцев морепродуктами Хлорамфеникол может накапливаться в морепродуктах
- Не допускается наличие хлорамфеникола в пищевых продуктах в странах Европейского Сообщества, Японии и США
- Европейское Сообщество приняло к действию мировые минимально допустимые уровни содержания Хлорамфеникола

Определение содержания Хлорамфеникола

^{*} Помечены позиции наличия Дейтерия во внутреннем стандарте CAP-d5

Параметры LC/MS анализа

HPLC

Column Zorbax SB- C18, 2.1×50mm, 1.8um (p/n 827700-902)

Flow rate 0.4 mL/min

Mobile phase A: water

B: methanol

Gradient 0-5min, 30~70% B

5-6min, 70~100% B

8min 100% B

Post time 4 min

Temp

45 °C

injection 5 µL

MS Source settings

Source ESI

Ion polarity Negative

Drying Gas temp.

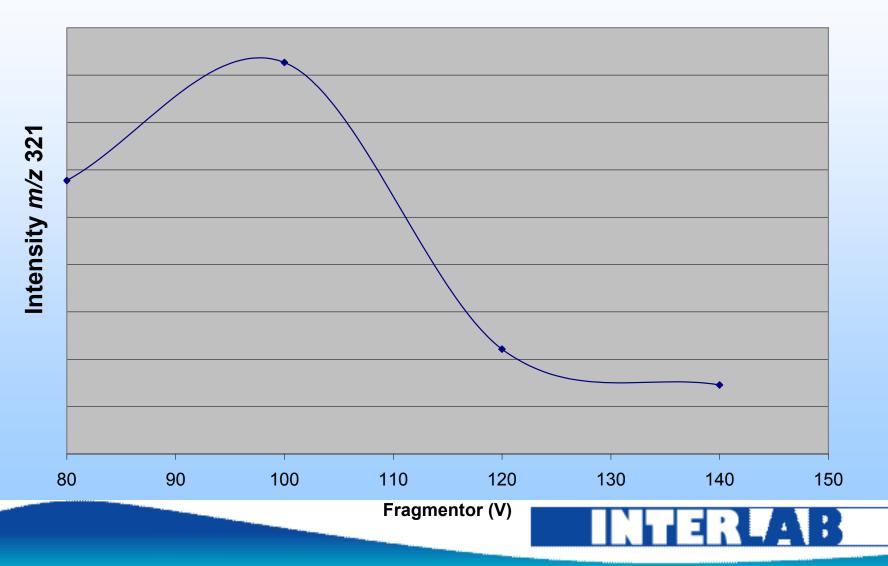
350 °C

Drying gas flow rate 10 L/min

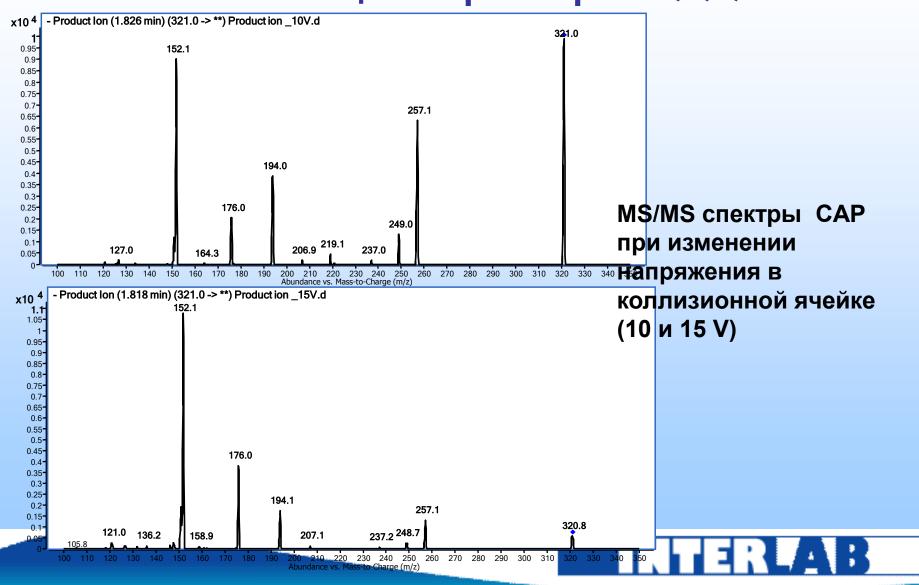
Nebulizer 45 psi

Vcap 3500 V

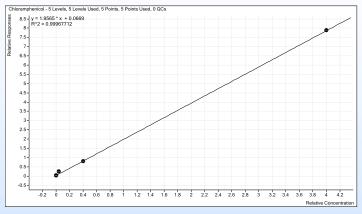
Fragmentor 100 V

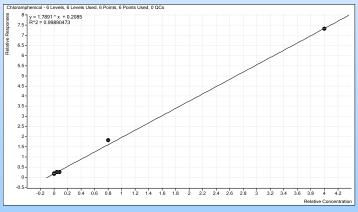

Collision energy 10 V for m/z 257(qualifier ion)

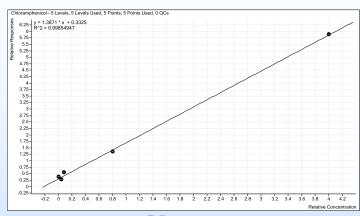
15 V for m/z 152 (quantitation ion)

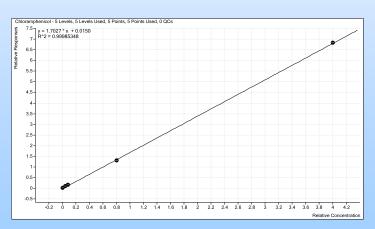


Определение содержания Хлорамфеникола Оптимизация параметров QQQ

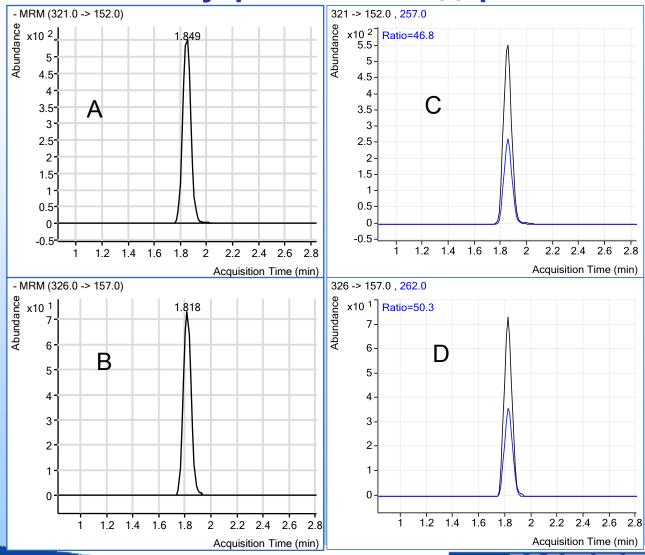

Fragmentor Optimization

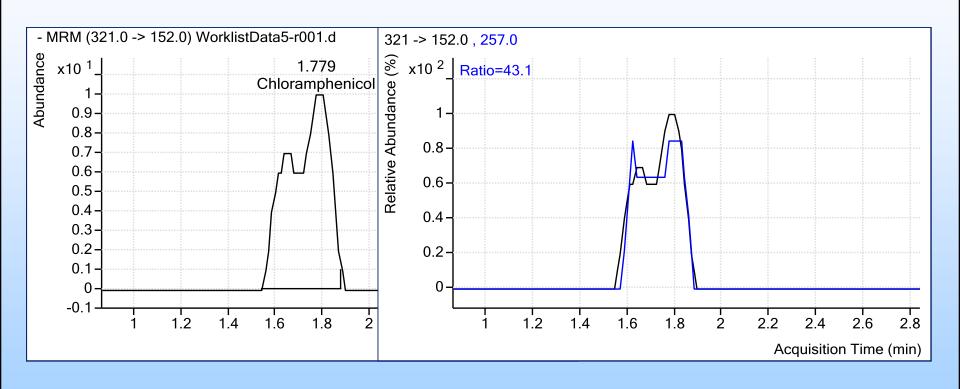

Определение содержания Хлорамфеникола Оптимизация параметров QQQ


Определение содержания Хлорамфеникола Линейность в различных матрицах


Растворитель

Креветки

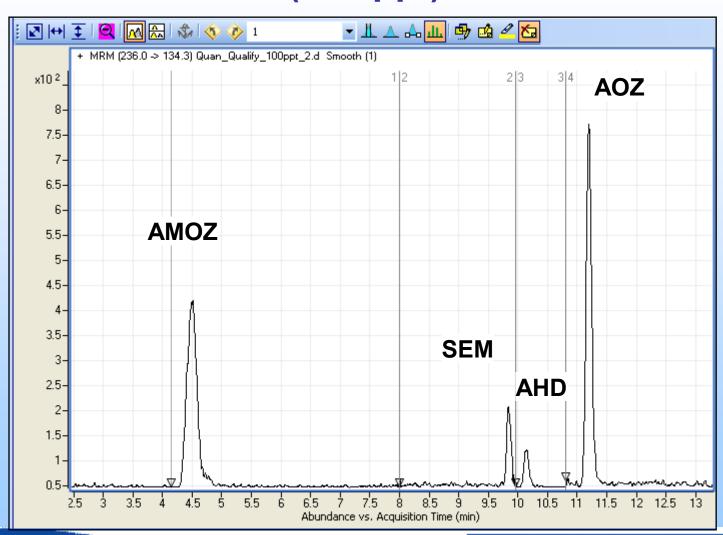

Мед


Куриное мясо

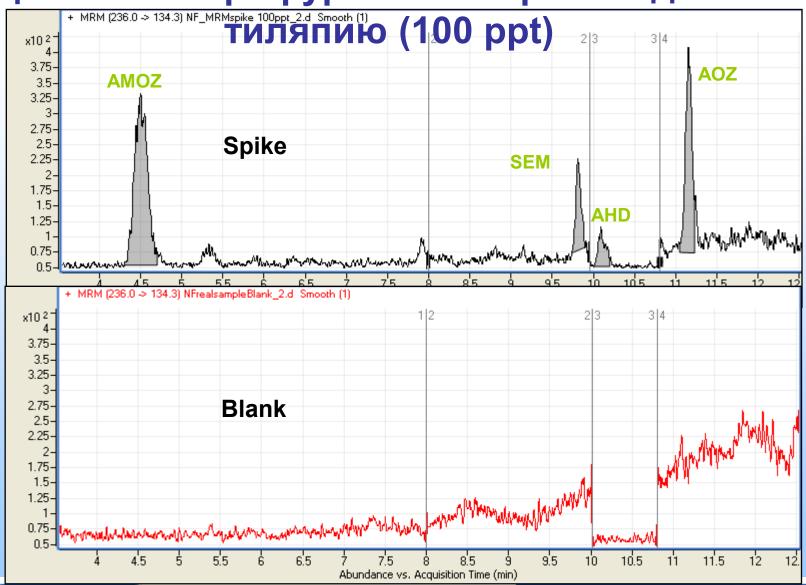
Соотношение ионов хлорамфеникола и внутреннего стандарта

Чувствительность в мёде 0,5 ppt хлорамфеникола

Определение содержания нитрофуранов


INTERLAB

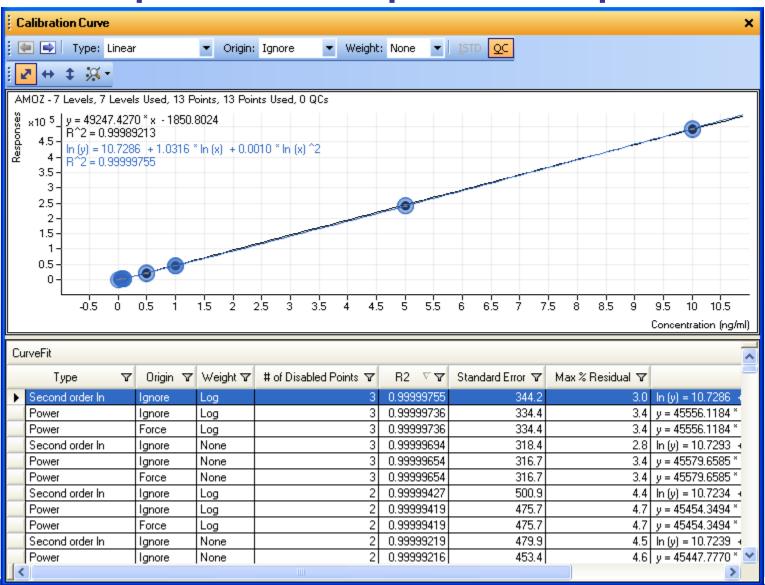
Определение содержания нитрофуранов


- Четыре основных представителя ряда нитрофурановых антибиотиков (фуразоидон, фуралтадон, нитрофуразон, интрофурантоин) применяются в ветеринарии
- Широко используются для лечения желудочнокишечных инфекций крупного рогатого скота, свиней и домашней птицы
- ▶ Европейское Сообщество запретило применение нитрофурановых антибиотиков при производстве продуктов питания животного происхождения специальным документом (Annex IV of Council Regulation 2377/90)
- Европейское Сообщество определило минимальное количество нитрофуранов (MRPL) 1 мкг/кг (1 ppb), которое лаборатории должны обнаружить и подтвердить

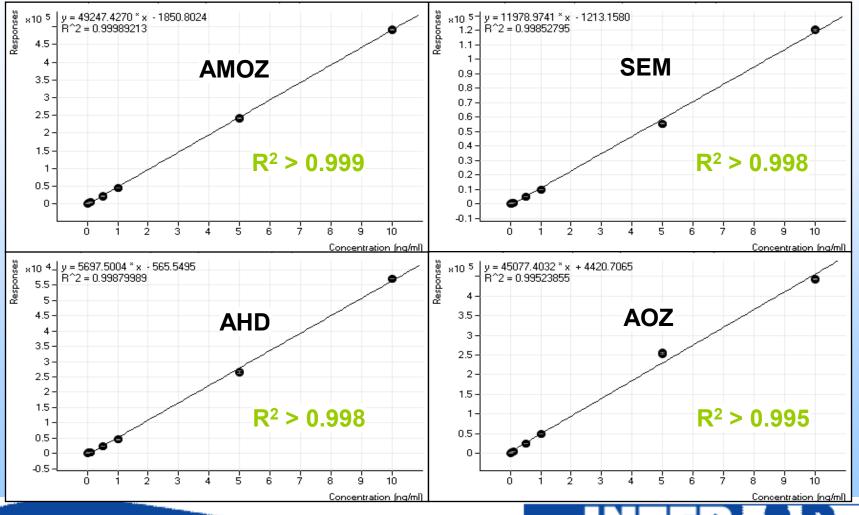
MRM спектры нитрофурановых производных (100 ppt)



Добавка нитрофурановых производных в


INTERLAB

Количественные результаты анализа нитрофурановых производных


I I I I I LAB

Построение калибровочной кривои

Калибровочные кривые нитрофурановых производных

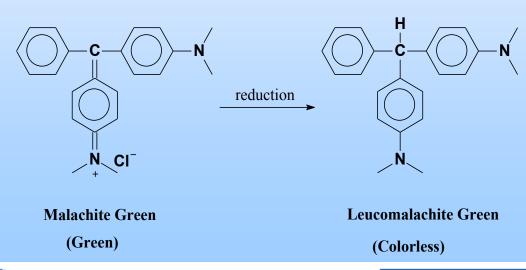
Линейный диапазон: 10 ppt – 10 ppb или от 0.5 до 500 pg на колонку

NHERLAB

Воспроизводимость анализа нитрофурановых производных

Соединение	Концентрация	RSD ¹
(MRM переход)	(ng/mL)	(%)
AMOZ	0.4	1.05
(<i>m/z</i> 335.1 > 291.4)	0.1	1.05
SEM	0.4	2.04
(<i>m/z</i> 209.1 > 166.3)	0.1	2.01
AHD	0.4	9.07
(<i>m</i> / <i>z</i> 249.1 > 134.3)	0.1	8.07
AOZ	0.4	1 50
(<i>m/z</i> 236.0 > 134.3)	0.1	1.58

¹ Восемь повторных вводов образца


Определение содержания малахитового зеленого

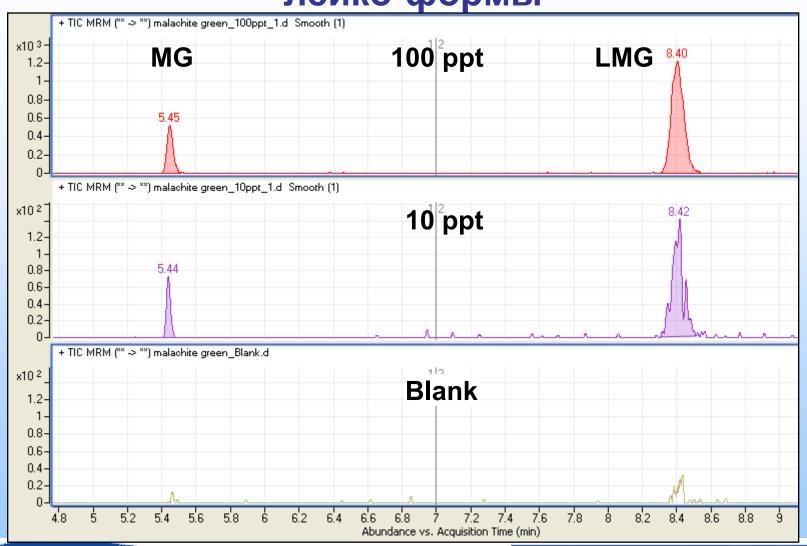
INTERLAB

Определение содержания малахитового зеленого(MG)

- Среди других ветеринарных препаратов трифенилметановый краситель малахитовый зеленый (МG) является популярным средством для предотвращения грибковых и паразитических инфекций при разведении рыб
- МG способен в животных организмах превращаться лейкоформу (LMG), которая откладывается жировых тканях рыб

Определение содержания малахитового зеленого(MG)

- При традиционном определении необходим HPLC оборудованный послеколоночным устройством для окисления лейко-формы с последующим детектированием либо UV, либо MS. Так определяется MG в форели (икра, мальки, мясе). Реакторы, используемые при этих исследованиях заполнены 25% PbO₂
- Альтернативный метод с использованием LC-APCI-MS для определения МG в сомах и форели без использования послеколоночного реактора и окисления лейко-формы. Этот метод предназначен для разработки и валидации процедуры пробоподготовки и анализа остаточных количеств МG методом HPLC.
- Метод LC–ESI-MS–MS используется для подтверждения обнаружения остатков этих веществ в различных матрицах.


Калибровочные кривые для малахитового зеленого(MG) и его лейко-формы

Линейный диапазон: 10 ppt – 10 ppb или от 0.1 до 100 pg на колонку

MRM спектры малахитового зеленого и его лейко-формы

Воспроизводимость анализа малахитового зеленого и его лейко-формы

Соединение (MRM переход)	Концентрация (ng/mL)	RSD* (%)
Малахитовый зеленый (m/z 329.3 > 313.3)	0,1	3,52
Лейко-форма MG (m/z 331.3 > 239.2)	0,1	2,25

^{*} Восемь повторных вводов образца

Определение содержания афлатоксинов

INTERLAB

Определение содержания афлатоксинов

Условия хроматографического разделения и масс-спектрометрического детектирования

LC : 1200LC

Column : Zorbax Exlipse XDB C18(150mm,2.1mm,3.5µm)

Mobile phase : A: MeOH, B:10mMCH₃COONH₄

40%A/B

Column temp : 40°C

Sample volume : 5ul

Flow rate : 0.25ml/min

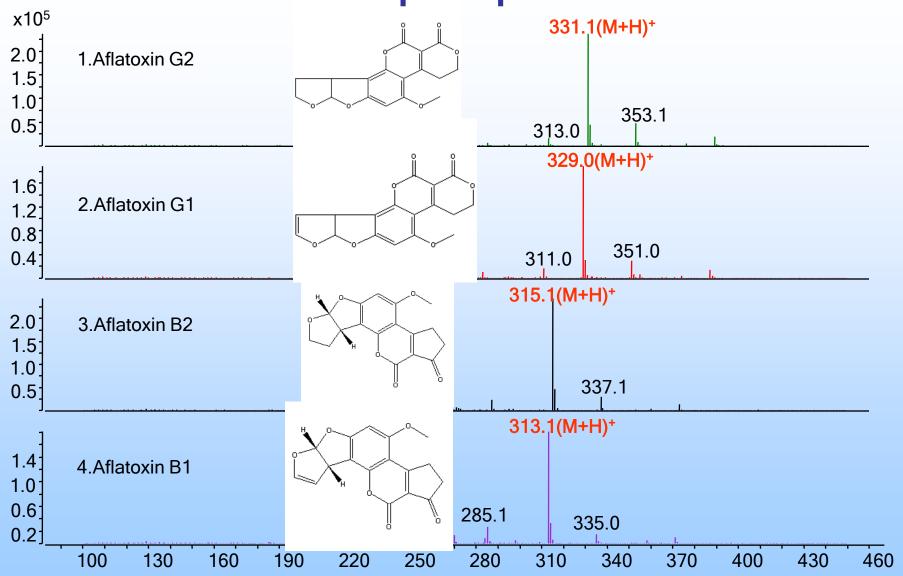
MS : QQQ

Ionization : ESI(Positive)

MS1 : m/z=331(AFG2),329(AFG1),315(AFB2),313(AFB1)

MS2 : m/z=245(AFG2),243(AFG1),287(AFB2),241(AFB1)

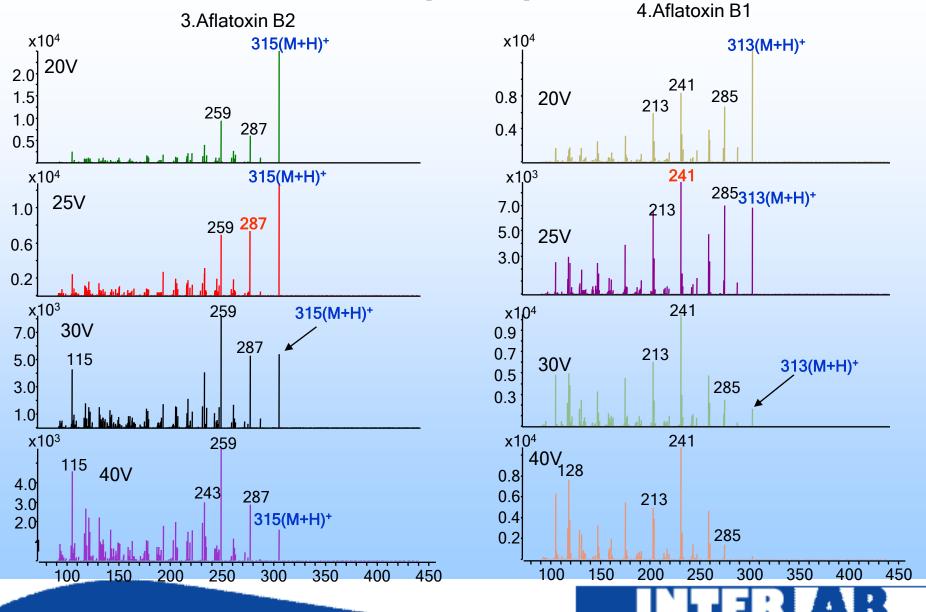
Collision energy : 25V(N2 gas)

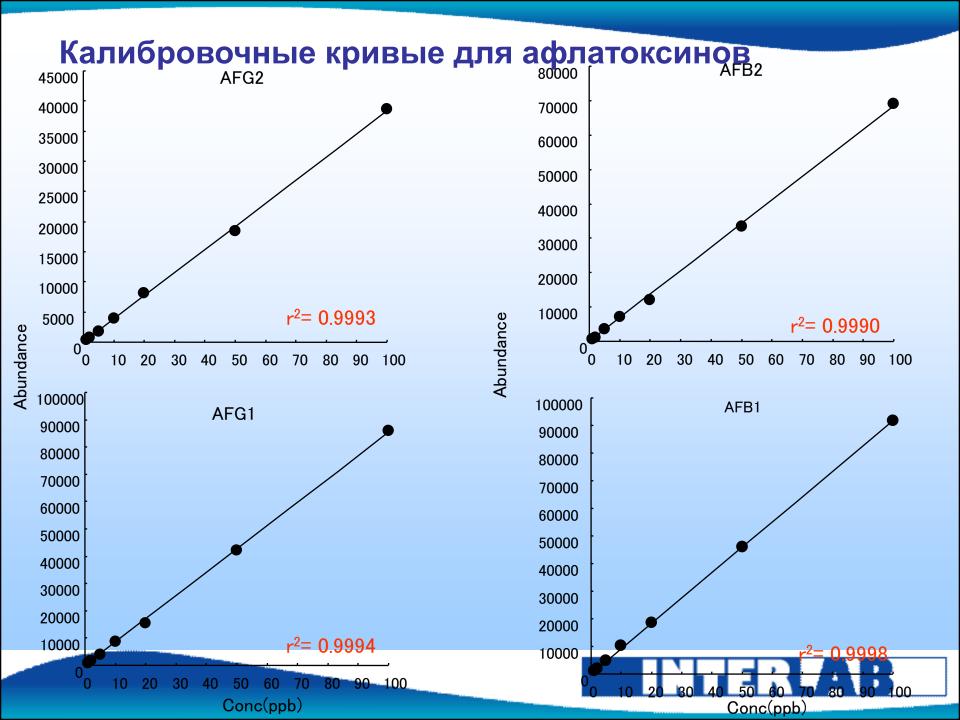

Scan range : m/z 100-450

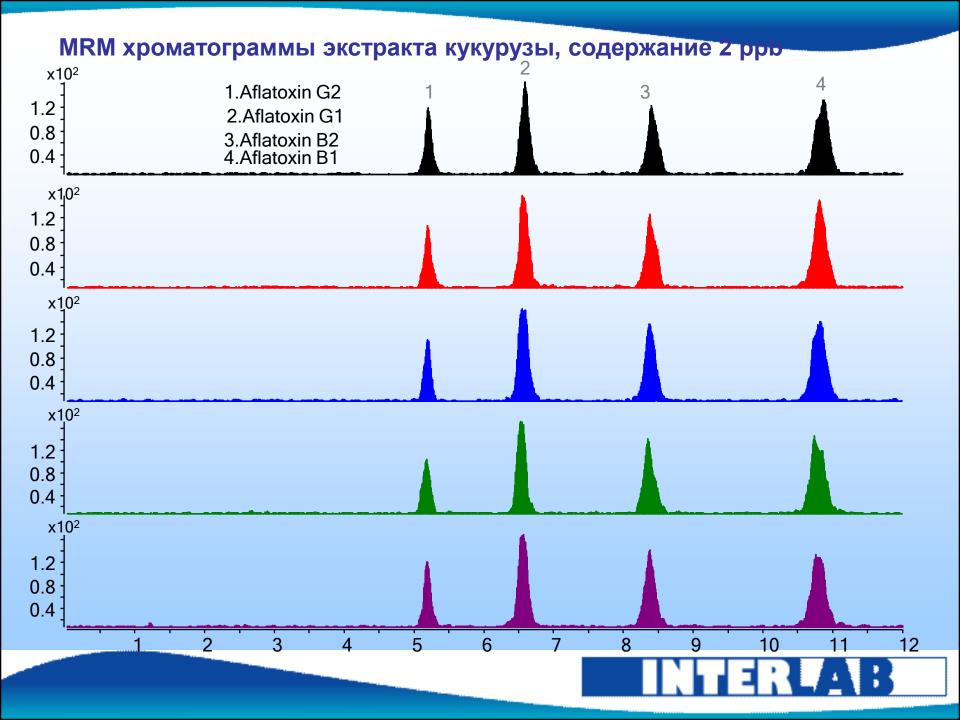
Drying gas : 10l/min at 350C

Nebulizer gas : 50psi Fragmentor : 220V

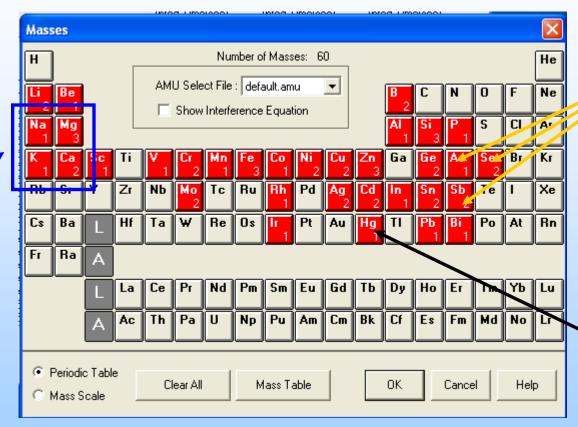
Масс-спектры афлатоксинов




INTERLAB


MS/MS спектры афлатоксинов

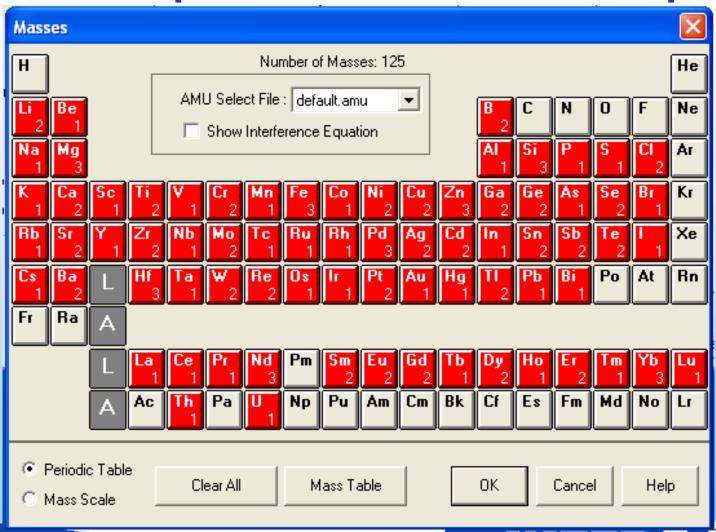
MS/MS спектры афлатоксинов



Использование масс-спектрометрии с индуктивно-связанной плазмой (ICP-MS) для токсичных соединений

Несколько методов для полного элементного анализа образца гидрид-

Макро элементы


Анализатор ртути (холодный пар)

образующие

элементы

Остальные элементы анализируются AAS ил<u>и ICP-OES</u>

Все элементы могут быть проанализированы за один ввод пробы

INTERLAB

Сочетание хроматография-ІСР-Імэ

Идентификация вещества основана на:

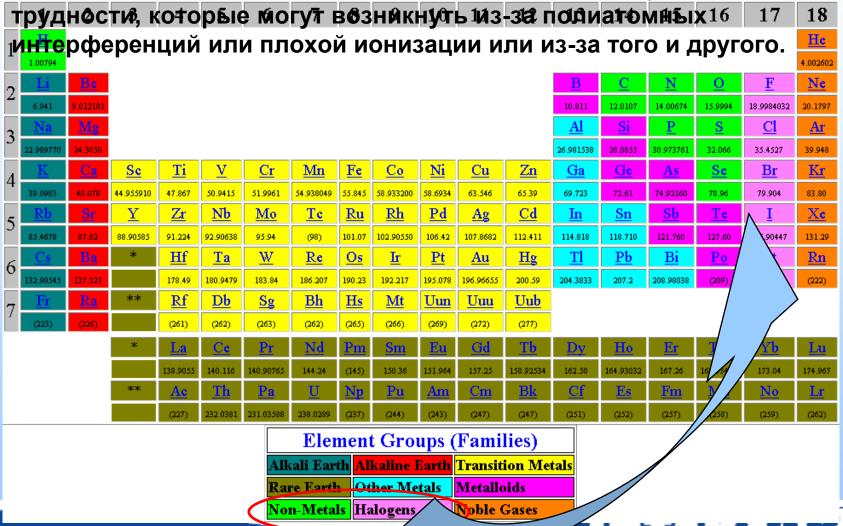
времени удерживания (хроматография)

информации от детектора (UV-Vis спектры, масс-спектры,

информация об элементах)

GC-ICP-MS

CE-ICP-MS

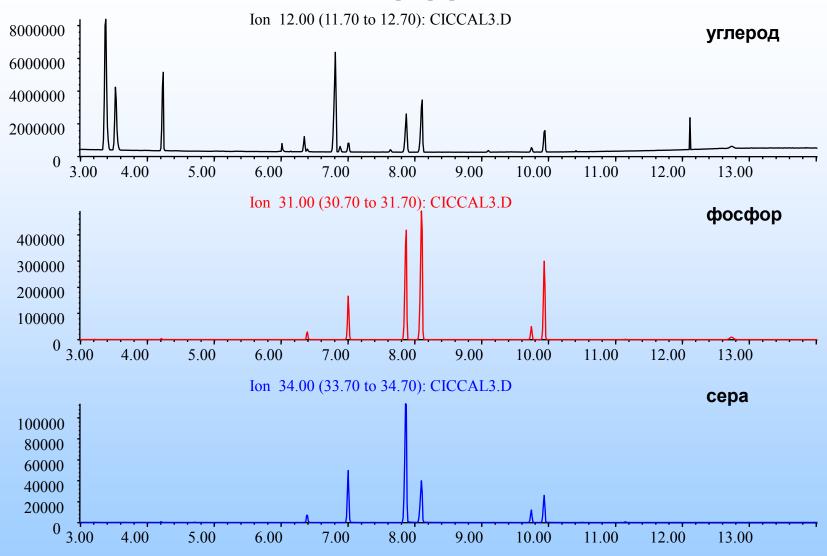


Техника ICP-MS для исследования «молекулярных форм»

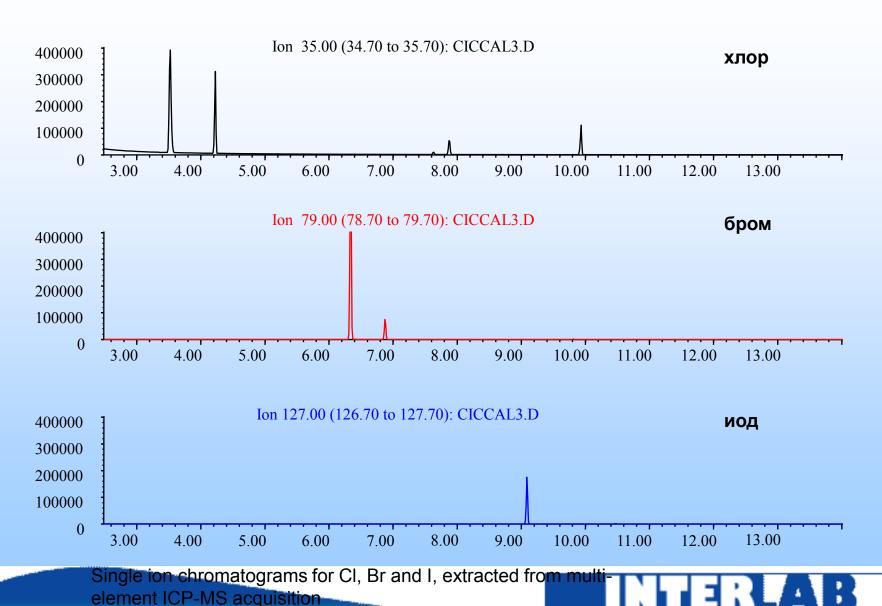
- Практически любой хроматограф может быть состыкован с ICP-MS:
 - Ионная хроматография (IC)
 - Жидкостная хроматография (HPLC)
 - Газовая хроматография (GC)
 - Капиллярный электрофорез (CE)
- Полезность или вредность некоторых элементов зависит от их молекулярной формы, которую желательно знать во время анализа:
 - Cr, As, Se, Hg, Sn
- Недавно внимание исследователей было сфокусировано на возможности использования ICP-MS для определения «нетрадиционных» аналитов:
 - S, P, halogens их определение затруднено «обычными» аналитическими методами

Метод ICP-MS для анализа неметаллов

Некоторые неметаллы могут быть проанализированы обычным методом ICP-MS, например, Se, однако, необходимо учитывать

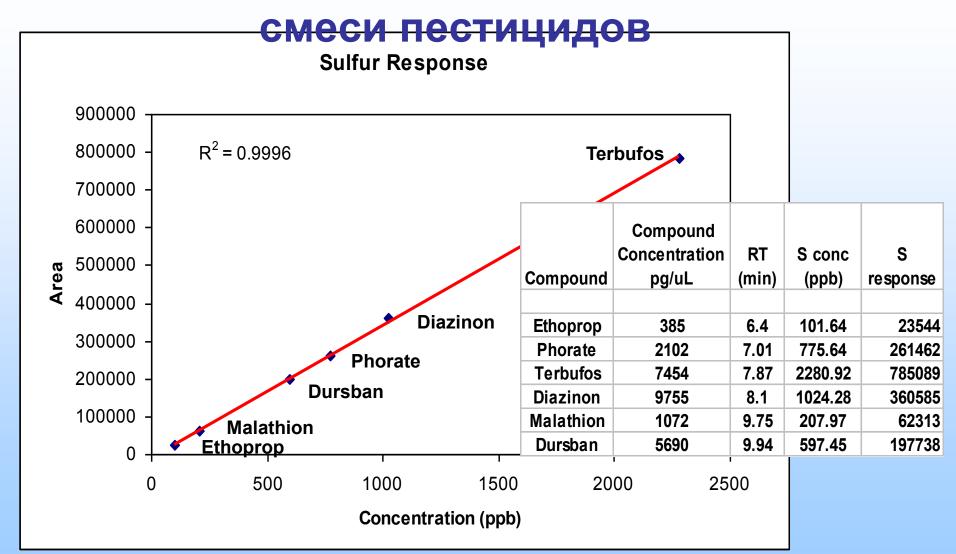


US EPA Method 8085 – анализ гербицидов и пестицидов


- EPA Region 10 Laboratory разработала метод 8085 который применим к более 100 гербицидам и пестицидам
- EPA в настоящее время изучает Agilent 7500 ГХ-ИСП-МС как альтернативу элементо специфичных детекторов для ГХ
- EPA приобрело 6 приборов Agilent 7500с в марте 2002
- Преимущества ИСП-МС как детектора для ГХ в методе 8085
 - Непревзойденная селективность и чувствительность
 - Анализ всех элементов/соединений за один ввод и изотопная информация для подтверждения соединения
 - Использование водорода как газ носитель, ниже затраты
 - Более быстрый чем АЭД, т.к. ГХ-ИСП-МС не требует хорошего разделения (не нужно избегать ко-элюирующих соединений углерода)
 - Высокая устойчивость высокотемпературная плазма

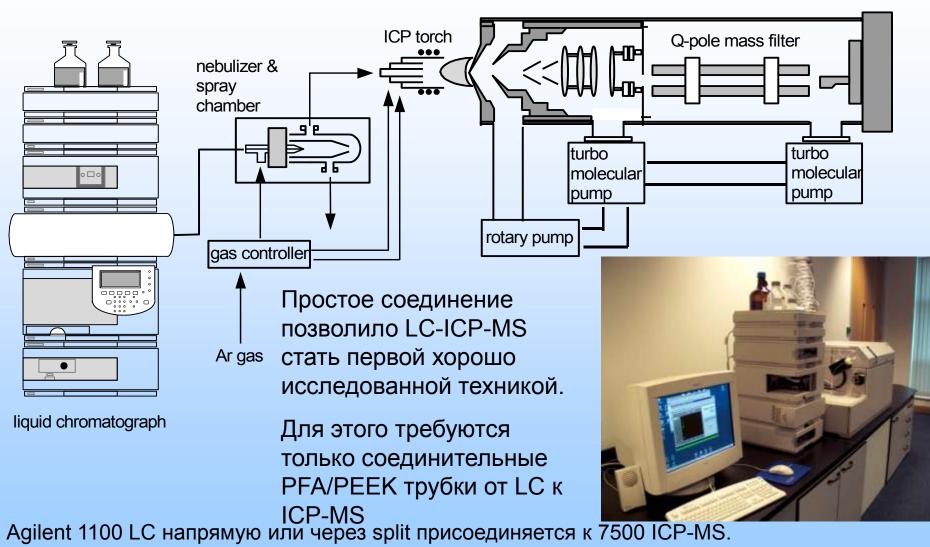
Анализ пестицидов на ИСП-МС

Анализ пестицидов на ИСП-МС



Независимая калибровка для пестицидов методом GC-ICP-MS

соединение	концентрация (pg/uL)	Калибруемые элементы	% элемента	
Dichlobenil	610	CI	41.3	
2,4,6-TBA	287	Br	72.5	
Ethoprop	39	P, S	12.8, <mark>26.4</mark>	
DBOB	100	Br	35.1	
Phorate	210	P, S	11.9, 36.9	
PCNB	169	CI	60.1	
Terbufos	745	P, S	10.8, 33.3	
Diazinon	976	P, S	10.2, 10.5	
Malathion	107	P, S	9.37, 19.4	
Dursban	569	CI, P, S	30.3, 8.82, 9.15	
loxynil (methyl ester)	50	I	66	
TPP	158	Р	50.3	


INITERLAB

Независимая калибровка - сера в

Интерфейс LC-ICP-MS

Возможно использование органической подвижной фазы.

LC-ICP-MS – Анализ As-молекулярных

H₂C-As-OH H₂C-Äs-OH ÓН ĊH₂ Methylarsonic acid Dimethylarsinic acid Trimethylarsine oxide

(DMA)

CH₃ H₂C - As⁺-CH₂ ĊН Tetramethylarsonium ion

(TMAs)

(TMAO)

CH₃ H₂C - As⁺ - CH₂ - COO H₃C - As⁺ - (CH₂)₂ - OH CH₂ ČH₂ Arsenobetaine Arsenocholine (AsBet)

Non-Toxic

Arsenosugars

(MMA)

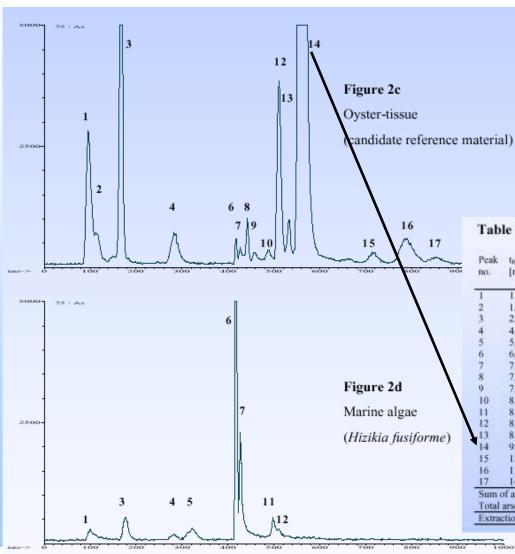
(AsCho)

1) Dimethylarsinoylriboside derivatives

2) Trimethylarsonioriboside derivatives

a) $R = SO_3H$ b) $R = OSO_3H$ c) R = OH

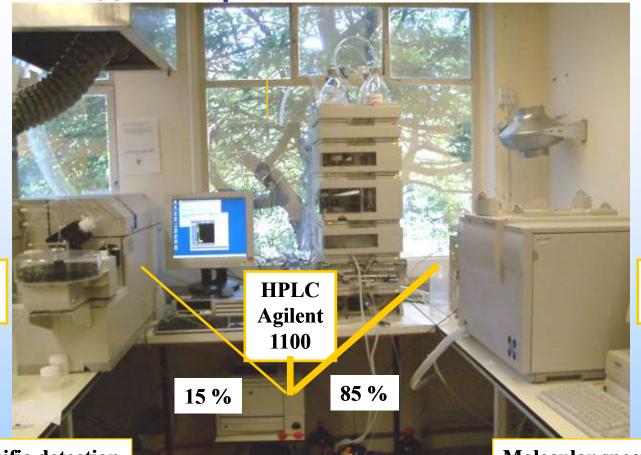
d) $R = OPO_3HCH_2CH(OH)CH_2OH$


Как известно многие неорганические соединения Аѕ являются ТОКСИЧНЫМИ ДЛЯ человека, а большинство органических безвредны.

Потенциальная токсичность для некоторых соединений Аѕ, например, многочисленных соединений As c рибозой, еще не установлена.

Данные предоставлены: Ute Kohlmeyer GALAB, Germany

Обнаружение As-молекулярных форм



HPLC-ICP-MS хроматограмма демонстрирует наличие различных соединений As в морских животных (ткани устриц) и морских водорослях (*Hizikia fusiforme*). Наличие различных соединений мышьяка

Table 2 ArscOHOBMAHOsults

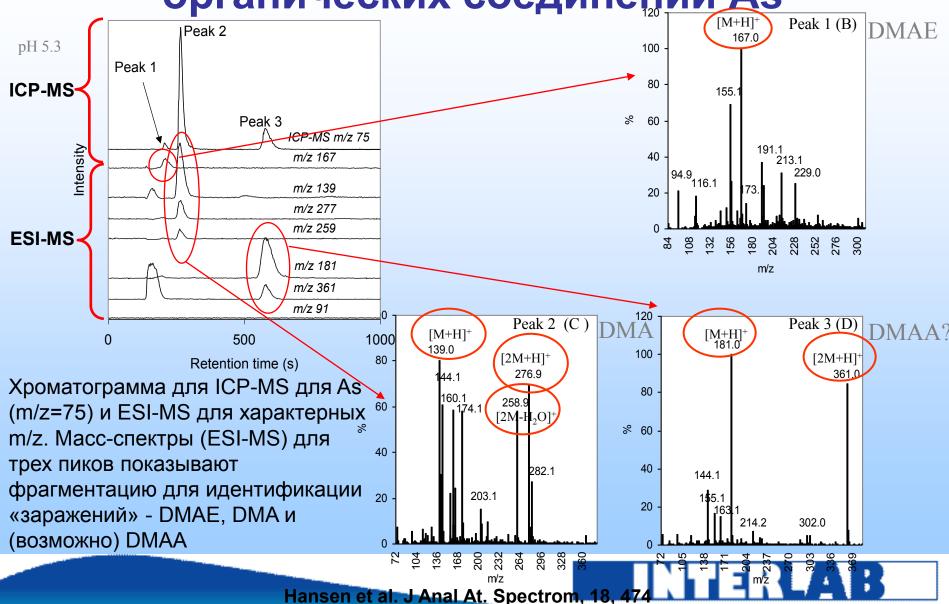
Peak no.	t _R [min]	compound	fish μg.g ⁻¹ as As DORM-2	mussel μg.g ⁻¹ as As BCR477	oyster μg.g ⁻¹ as As candidate mat.	algae μg.g ⁻¹ as As <i>Hizikia fusif.</i>	algae μg.g ⁻¹ as As Laminaria
1	1,62	As(III)	0,05	0,35	0,71	-	-
2	1,89	Unknown1			0.13		
3	2,82	MMA	0,14	0.84	2,10	1,75	2,74
4	4.71	DMA	0.49	0.94	0.97	1,32	0,27
5	5,21	As-sugar Ia	-	040/011	2	4,17	28,2
6	6,97	As-sugar 1b	4	0.49	0,17	31.4	1,37
4 5 6 7 8 9 10 11 12	7,12	As(V)	0.05	0,10	0.08	12,3	13,7
8	7,38	Unknown2	4	0,56	0.42		
9	7,64	Unknown3		\$100 m//	0.08		
10	8,14	Unknown4		20	0,13	8	75
11	8,31	Unknown5	GC.	40	190000 100000	2,41	
12	8,52	Unknown6		1.36	3,36	1,10	5,2
13	8,89	Unknown7	*	0,03	0.48	100	0,55
14	9,35	AsBet	16,1	3,49	15.1		1
15	12,1	TMAO	0,30	0.14	0.31		
16	13,0	AsCho	11/2000	0,17	1,24		
17	14,2	TMAs	0,30	2	0.34		
manufacture and the second sec		17,4	8,5	25,6	54,6	52,0	
		digestion)	17,4	10,2	26,7	51,2	49.5
	tion effi		100%	83%	96%	107%	105%

Обнаружение органических соединении до мотод HPLC с детектированием ESI-MS и ICP-MS

ESI-MS

Agilent 1100

Elemental specific detection Molecular specific detection


В ВЭЖХ Agilent 1100 происходит разделение веществ и с контролируемым делением они направляются в ESI-MS и ICP-MS. Происходит одновременное определение содержания As-содержащих соединений и самого As (ICP-MS) и определение концентраций и получение структурной информации об органической составляющей мышьяковистых

соединений (ESI-MS) Courtesy Jörg Feldmann et al, Aberdeen Univ.

ICP-MS

Agilent 7500

Разделение и идентификации органических соединений Аѕ

Спасибо за внимание!

По всем вопросам обращаться в ООО «Химмед»

Адрес: 115230, г.Москва, Каширское шоссе, д.9, корп.3

Тел.: (495) 728-4192, 742-8265/66, (499) 613-2964,

Факс: (495) 742-8341

E-mail: mail@chimmed.ru www.chimmed.ru

